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The existence of traveling wave front solutions with a minimum speed selected for reaction-dispersal
processes is studied. We obtain a general existence condition in terms of the waiting time and dispersal distance
probability distribution functions and we detail this result for situations of ecological interest. In particular,
when particles disperse according to jumps of short length and any waiting time probability distribution
function, we show that the minimum speed selection for traveling wave fronts is not always possible, so the
waiting time and the dispersal distance distributions cannot be arbitrarily chosen.
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I. INTRODUCTION

It is well known that when diffusive processes couple to
reaction, front solutions exist[1]. When the reaction term is
of logistic type then the emerging fronts(pulled fronts) from
sufficiently localized initial conditions travel with minimum
possible speed. The simplest case is the parabolic reaction-
diffusion equation also called Fisher’s equation where par-
ticles jump according to diffusion and wait a short time be-
tween successive jumps. Some extensions of the Fisher’s
equation have been made. For example, if waiting times are
not so small but particles disperse by diffusion one has the
hyperbolic reaction-diffusion equation[2]. In ecological
modeling it is interesting to consider long range dispersals
but short waiting times; then one has to deal with integrod-
ifferential equations[3]. The microscopic properties of the
underlying transport may be described in general by a wait-
ing time wstd and a dispersal distanceFsxd probability dis-
tribution function(PDF). The first one gives the probability
that a particle waits a timet between successive jumps and
the second one gives the probability of performing a jump of
distancex.

By means of the Hamilton-Jacobi method[4] we study
the minimum speed selection of pulled fronts and we show
that these fronts exist only when both the Laplace transform
of wstd and the bilateral transform ofFsxd fulfill a certain
restriction. Then, traveling wave front solutions with a mini-
mum speed selected do not exist for arbitrary distributions,
an interesting result for the modelization of real systems
which is here illustrated for some limiting situations. First,
we consider that particles disperse by diffusion but wait a
time between jumps according to a general waiting time PDF
and for two specific cases of ecological interest: the Poisson
(which is usual when random processes are involved) and the
Dirac delta. The first one is in fact a family of PDF’s with a
long tail; only for some of them traveling wave front solu-
tions with a minimum speed selected may exist, as we shall
see. The second one models a single waiting time which can
be arbitrarily large. In this case we show that the existence

condition fails unless one considers small waiting times.
The second limiting situation considers that particles,

waiting a short time between jumps, may disperse according
to a general dispersal distance distribution. We show that
traveling wave front solutions with a minimum speed se-
lected exist in this case for any dispersal kernel. Moreover,
the specific case of a Laplace(leptokurtic) dispersal distribu-
tion is studied, as it has major interest on ecological applica-
tions (see, for example, Ref.[5]).

II. REACTION-DISPERSAL MODELS

We derive the evolution equation for the reaction-
dispersal process according to the continuous-time random
walk theory(CTRW). The quantity which defines the motion
is the probability distribution function(PDF) Csx,td of the
particle performing a jump of lengthx after waiting a timet
at its starting point. IfPsx,td is the probability density of
arriving at pointx at time t and rsx,td is the probability
density of being at pointx at time t, we have

Psx,td =E
R

dx8E
0

t

dt8Csx − x8,t − t8dPsx8,t8d + Psx,t = 0ddstd

+ gsx,td,

rsx,td =E
0

t

dt8fst − t8dPsx,t8d, s1d

wherefstd is the probability of remaining at least a timet on
the point before proceeding with another jump. Ifwstd
=edxCsx,td is defined as the waiting time PDF, in the
Fourier-Laplace space, Eqs.(1) can be rewritten in the closed
form [6],

rsx,td =E
0

t

dt8wst8dE
R

dx8Fsx8drsx − x8,t − t8d

+E
0

t

dt8fst8df„rsx,t − t8d…. s2d
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In this expression,f is the local growth function and it
depends explicitly onr as a nonlinear function. We will con-
sider that it is of the Fisher-Kolmogorov-Petrovski-Piskunov
type [1,7] f =rrFsrd wherer is the constant growth rate and
Fsrd is such thatFs0d=1. Making use of the Hamilton-
Jacobi techniques we have shown before[8] that in this case
Eq. (2) becomes the Hamilton-Jacobi equation

1

ŵsHd
= F̂spd +

r

H
S 1

ŵsHd
− 1D , s3d

with the hatted distributions defined as the transforms ofwstd
andFsxd,

ŵsHd =E
0

`

e−Htwstddt, F̂spd =E
−`

`

epxFsxddx, s4d

and the speed of the front given by the expressions

v =
H

p
,

dH

dp
=

H

p
. s5d

The latter is nothing but the existence condition of a mini-
mum speed ifd2H /dp2.0. So, joining both equations in Eq.
(5) the expression forv can be written as

v = min
H

H

psHd
or v = min

p

Hspd
p

. s6d

Now, one may wonder if there exists any general condition
for the existence of a minimum in these expressions. This
condition could be of great theoretical and practical interest,
as it would determine the form of the Laplace and bilateral
transform for the distributions of waiting timesŵsHd and

dispersal distancesF̂spd.
The existence of a minimum in Eq.(6) requires that

lim
H→0

dS H

psHd
D

dH
, 0 and lim

H→`

dS H

psHd
D

dH
ù 0 s7d

or

lim
p→0

dSHspd
p

D
dp

, 0 and lim
p→`

dSHspd
p

D
dp

ù 0. s8d

First of all, we need to show that Eqs.(7) and (8) are
equivalent. An easy way to do this is by proving that
dH/dp.0 [as dv /dp=sdH/dpdsdv /dHd]. Then, we must
study the expression

]H

]p
=

F̂8spd

−
ŵ8

ŵ2S1 −
a

Ht
D +

r

H2S1 − ŵ

ŵ
D , s9d

where we defineF̂8spd=dF̂spd /dp and ŵ8sHd=dŵsHd /dH.
The numerator and the denominator in the expression above
can be proved to be positive separately. For the numerator,
we find

F̂8spd =E
−`

`

xepxFsxddx=E
0

`

xsepx − e−pxdFsxddx. 0,

s10d

where we have used the isotropy of the kernel, i.e.,Fs−xd
=Fsxd.

For the expression in the denominator, we start using the
normalization ofFsxd andwstd to obtain

F̂spd =E
−`

`

epxFsxddx

=E
0

`

sepx + e−pxdFsxddx

. inf
xPf0,̀ d

se−px + epxdE
0

`

Fsxddx= 1, s11d

ŵsHd =E
0

`

e−Htwstddt , sup
tPf0,̀ d

se−HtdE
0

`

wstddt = 1,

s12d

ŵ8sHd = −E
0

`

te−Htwstddt , 0. s13d

Finally, from the results(11) and (12), Eq. (3) lead us to

S1 −
a

Ht
D = S ŵ

1 − ŵ
D 1

F̂spd − 1
. 0. s14d

So, we have proved the condition]H /]p.0. Now we
know that Eqs.(7) or (8) can be analyzed indistinctly. Hence
we just need to prove what are the necessary conditions for
Eq. (7).

(i) Limit Ht→0sp→0d: From Eq. (14), it can be seen
that the solution is restricted for values ofHt higher thana.
Then, this limit is equivalent toHt→a+. The derivative in
Eq. (7) reads

dS H

psHd
D

dH
=

1

2
Î1 − ŵsHd

ŵsHd
ŵ8sHd

f1 − ŵsHdg2

sHtd3/2

ÎHt − a

+
1

2
tÎ ŵsHd

1 − ŵsHd

ÎHts2Ht − 3ad
sHt − ad3/2 . s15d

Taking into account the expressions(12) and (13) in Eq.
(15) we find that the condition

lim
H→a+

dS H

psHd
D

dH
, 0 s16d

holds for any value ofHt.
(ii ) Limit Ht→`sp→`d: This limit cannot be analyzed

straight, so we first need to expand by Taylor up to orderM

in ŵsHd−1 and up to orderN in F̂spd,
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ŵsHd−1 = o
m=0

M

bmHm,

F̂spd = o
n=0

N

anp
n, s17d

where the coefficientsai and bi depend on the generating
moments ofFsxd and wstd, respectively. In the limitHt
→`sp→`d the expansions in Eq.(17) are dominated by the
term with the highest exponent and now the Hamilton-Jacobi
equation(3) leads us to the relation

aNpN . bMHM . s18d

That is,p,HM/N and we can writev=Hspd /p=cH1−M/N with
c a positive constant. This allows us to affirm that the second
condition in Eq.(7) only holds forM øN.

As a result, we have found that traveling wave solutions
with a minimum speed selected are only possible if the high-
est order in the truncation of the Taylor expansion of the
inverse ofŵsHd is not higher than the order in the truncation

of the Taylor expansion ofF̂spd. In previous works[2,9], it
has been shown that the meaning of cutting the Taylor ex-

pansion inF̂spd at a low order is that our measurements are
then restricted to much further distances than the character-
istic distance of dispersala (that isuxu@a), that is, we are in
the asymptotic regime(or, analogously, one may say that the
distances of dispersal are short). Likewise, expandingŵsHd
[or ŵsHd−1] just up to a certain order is equivalent to assume
that our observations are only valid for much greater times
than the characteristic waiting timet (that is t@t) which is
also equivalent to consider that waiting times are short.

From these arguments, the condition for the existence ofv
found above is easy to interpret: if the distances where the
fronts can be analyzed are very high(N is low), then the
times of our measurements must be correspondingly high(M
not higher thanN) and it is not possible to determine what
happens at the initial stages. On the contrary, when we are
restricted to high(asymptotic) times(N is low), we have that
there are no restrictions on the distances we may observe; as
the front has already formed, we can study both the short and
the long distances.

Besides the intuitive interpretation given here, we want to
stress that the conditionM øN we have found is of great
practical interest, since it shows that we cannot choose arbi-
trarily the distributionswstd andFsxd if we want to guarantee
the existence of traveling wave front solutions with a mini-
mum speed selected of reaction-dispersal equations; it is an
important fact that experimentalists should take into account
for the modelization of real systems. In the next sections,
some specific examples are reported in order to illustrate the
above results.

III. LONG WAITING TIMES AND SHORT DISTANCE
OF DISPERSAL

We assume in this section that the dispersal distance PDF

describes jumps of short length. Then,F̂spd may be ex-

panded in Taylor series up to second order to yieldF̂spd
.1+a1p+a2p

2 with a1=F̂8sp=0d=e−`
` xFsxddx=0 and a2

= 1
2F̂9sp=0d= 1

2e−`
` x2Fsxddx= 1

2M2 where M2 is the second
moment of the dispersal distance PDFFsxd and we have
made use of Eq.(4). This approximation corresponds to a
diffusive (classical) dispersal. The speed is then from Eq.(5),

v =
a

t
min
Ht.a

Î ŵsHtd
1 − ŵsHtd

sHtd3/2

ÎHt − a
, s19d

wherea=ÎM2/2 anda=rt. Let H* be the value ofH where
the minimum speed is reached. Then it is found from the
second equation in Eq.(5) that

ŵ8sH * td
ŵsH * tdf1 − ŵsH * tdg

=
3a − 2H * t

H * tsH * t − ad
, s20d

where ŵ8sH* td=dŵsHtd /dsHtd evaluated atH=H*. It is
easy to see from Eq.(19) that when

ŵsHtd−1 . OsH2t2d s21d

then the speed monotonically decreases and no minimum is
reached, which is in accordance with our general condition
M øN found above(here we takeN=2, so M ø2 is the
necessary condition). Let us explain this result for some
waiting time distribution of biological interest: Poisson and
delta.

The Poisson waiting time distribution is found in the mo-
tion of cells when they wait a certain time between succes-
sive jumps in order to find the optimum spatial orientation to
perform the next jump[10]. The general form for this distri-
bution is

wstd =
1

tGsm+ 1d
st/tdm exps− t/td, s22d

has a maximum att=mt, a mean waiting timektl
=e0

`twstddt=tsm+1d, a kurtosis B4=kt4l / skt2ld2=sm+3dsm
+4d / sm+1dsm+2d, and a Laplace transformŵsHtd=s1
+Htd−m−1.

In this case, the speed is given by

vm =
a

t
min
Ht.a

sHtd3/2

ÎHt − aÎs1 + Htdm+1 − 1
s23d

and it is easy to see that form.1 the speed decreases mono-
tonically to zero and no front minimum speed is reached.
Furthermore, the condition(20) has no solution form.1. To
see this, let us express Eq.(20) for this particular case,

sm+ 1dHtsHt − ads1 + Htdm = s2Ht − 3adfs1 + Htdm+1 − 1g.

s24d

We callRsHtd and lsHtd the right and left hand sides of Eq.
(24), respectively. Both sides start from 0 and initially de-
crease withHt but the curveR is below the curvel because
R8s0d=−3asm+1d and l8s0d=−asm+1d. For Ht→` then R
,2sHtdm+2 and l ,sm+1dsHtdm+2. In consequence, both
curves intersect ifR is abovel for largeHt and this is pos-
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sible only if m,1. This agrees with the conditionM ø2
noted above.

In conclusion, when the dispersal is driven by diffusion
and a Poisson waiting time PDF, fronts only exist ifm,1,
that is, for a mean waiting time lower than 2t, or when the
time of maximum probability is lower thant or when the
kurtosis of the waiting time PDF is greater than 10/3.

Two analytical expressions for the speed may be found.
For m=0 we have the exponentially decaying waiting time
distribution wstd=t−1e−t/t and the speed of the front is the
Fisher one,

v0 = 2
a

t
Îa, s25d

while for m=1 one haswstd=t−1st /td exps−t /td, and from
Eq. (24) one has the minimum attained atH* t=4a/ s2−ad
for a,2 and the speed is

v1 = 2
a

t

Î2Îa

2 + a
, for a , 2. s26d

It is easy to see thatv1,v0. For the rest of valuesm
P f0,1g the minimum must be calculated numerically from
Eq. (23). We plot some results for different values ofa in
Fig. 1; it is seen there that the speed decreases withm be-
cause the most probable waiting time moves to the right
whenm increases. Simulations of these stochastic processes
on square lattices have also been performed to prove the
validity of the theoretical values ofv; they appear in Fig. 1
(points) too. In that simulation, the continuous distributions
were discretized in order to adapt them to the lattice(always
choosing the parameters of the algorithm in order to mini-
mize the effect of the discretization over the dynamics of the
system). The reaction process was introduced by applying
the functionf =rrFsrd discussed above to every site at every

time step. More details about the simulations can be found in
Ref. [6].

The agreement found between these simulations and Eq.
(23) is excellent for low values ofa. However, when this
parameter is higher some discrepancies appear(except for
the Fisher’s case,m=0, which is valid for anya); it probably
happens when the divergency inH* t reported above(for
example,a→2 for m=1) becomes apparent.

We assume now a waiting time distribution with the form
wstd=dst−td which has a Laplace transformŵstHd=e−Ht.
This PDF models particles which wait a timet (arbitrarily
large) between successive jumps. From Eq.(19) the front
speed is given by

v =
a

t
min
Ht.a

sHtd3/2

ÎeHt − 1ÎHt − a
s27d

and the condition(20) is found to be

eHt =
3a − 2Ht

H2t2 − s2 + adHt + 3a
. s28d

The speed must be calculated forHt.a but Eq.(28) has no
solution because forHtùa the left hand side of Eq.(28) is
always greater than the right hand side. So, fronts do not
exist for this waiting time distribution. However, for short
waiting times fronts may exist. For example, if one takes
eHt.1+Ht one has the parabolic reaction-diffusion equa-
tion and Eq.(27) yields again the Fisher speed(25). If one
takes noweHt.1+Ht+ 1

2H2t2 one has the hyperbolic reac-
tion diffusion [2] where the effect of waiting timet is stron-
ger than in the parabolic case.

IV. SHORT WAITING TIMES AND LONG DISTANCE
OF DISPERSAL

In this section we assume a waiting time PDF with short
waiting times and a general jump length PDF. For short wait-
ing timest@t one may consider the following Taylor expan-
sion: 1/ŵsHd.1+b1H where b1=−ŵ8sH=0d / ŵsH=0d2

=e0
`twstddt;t is the mean waiting time, so that 1/ŵsHd=1

+Ht and Hamilton-Jacobi equation(3) is H=t−1fF̂spd+a
−1g. Therefore the speed of the front may be calculated from
Eq. (5),

v =
1

t
min
p.0

F̂spd + a − 1

p
. s29d

It is easy to check that the functionFspd=fF̂spd+a−1g /p
always has a minimum. In the limitp→0, F8spd
=hF̂8spd /p−fF̂spd+a−1g /p2j,−1/p2,0 and the speed is
a decreasing function ofp when p is near 0. On the other

hand, in the limitp→`, F8spd,F̂8spd /p.0 and the speed
is an increasing function ofp. In consequence, the speed
always reaches a positive minimum value in the intervalp
P f0,`d and the front always exists. This is in accordance

FIG. 1. Plot of the dimensionless front speedvt /a versus the
dimesionless parametera for a family of Poisson waiting time
PDF’s. The speed is calculated from Eq.(23). This plot shows that
the speed decreases withm because the waiting time of maximum
probability moves to the right whenm increases. Values obtained
from computer simulations are also shown form=0 (circles), m
=0.5 (squares), andm=1 (triangles).
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with our general arguments above: hereM =1, so any value
for N is allowed.

The speed is finally computed from Eq.(6)

v =
1

t

F̂sp * d + a − 1

p*
, s30d

wherep* is solution of F̂sp* d+a−1=p* F̂8sp* d.
We report here the Laplace kernel

Fsxd =
1

2a
e−x/a s31d

as a typical example of a kernel usual in ecological systems
related to dispersal of species[5]. When the Laplace trans-
form of Eq. (31),

F̂spd = s1 − a2p2d−1, s32d

is introduced into Eq.(29), the resulting expression we ob-
tain for the velocity is

v =
2a

t

4s1 − ad2

s3 −Î1 + 8ad2F− 1 − 2a + Î1 + 8a

2s1 − ad
G1/2

. s33d

In Fig. 2 we show the comparison between this theoretical
prediction forv and the values found from direct simulations
of the stochastic process as described above.

V. CONCLUSIONS

Traveling wave front solutions of reaction-dispersal pro-
cesses with a minimum speed selected do not always exist
for an arbitrary waiting time and dispersal distance distribu-
tions. The existence of these fronts depends on the PDF’s
chosen to model the process, so the main conclusion of this
work is that in general they cannot be chosen separately in
order to have traveling wave fronts selecting the minimum
speed. Specifically, we have achieved that traveling wave
solutions with a minimum speed selected are only possible if
the order in the truncation of the Taylor expansion of the
inverse of the Laplace transform of the waiting time PDF is
not higher than the order in the truncation of the Taylor ex-
pansion of the bilateral transform of the dispersal distance
PDF. Then, if we are restricted to observe what happens at
long times we cannot obtain information from what happens
at short distances and so no minimum speed is selected.
However, when our measurements are restricted to long dis-
persal distances then we find that no restrictions, on the trun-
cation of the Taylor expansion of the inverse of the Laplace
transform of the waiting time PDF, appear for the existence
of fronts, as both short and long waiting times are tractable.

As some illustrative examples, we have seen that when
the dispersal process is diffusive, the existence condition re-
quires that the inverse of the Laplace transform of the wait-
ing time PDF may be expanded in Taylor up to second order
(not more). This result has been verified for different waiting
time PDF’s and contrasted with numerical simulations. For a
family of Poisson PDF’s we have shown that traveling wave
front solutions with a minimum speed selected exist only if
mø1. Likewise, for a single waiting time PDF these fronts
only exist if the waiting time is sufficiently small. However,
when the dispersal process is described by a long-tailed dis-
persal distance PDF traveling wave front solution with a
minimum speed selected exist if the waiting time is suffi-
ciently small. We have detailed this case for the Laplace
dispersal distance PDF and it has been compared to numeri-
cal simulations.

So, we think that the work presented here can be useful
for a wide number of scientists working on reaction-dispersal
systems where the specific pattern of dispersal needs to be
described in great detail. We have reported some specific
examples in relation to ecological systems, but many other
potential applications, covering very different areas[1,11],
can benefit from these results.
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