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Analysis of fronts in reaction-dispersal processes
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The existence of traveling wave front solutions with a minimum speed selected for reaction-dispersal
processes is studied. We obtain a general existence condition in terms of the waiting time and dispersal distance
probability distribution functions and we detail this result for situations of ecological interest. In particular,
when particles disperse according to jumps of short length and any waiting time probability distribution
function, we show that the minimum speed selection for traveling wave fronts is not always possible, so the
waiting time and the dispersal distance distributions cannot be arbitrarily chosen.
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[. INTRODUCTION condition fails unless one considers small waiting times.
The second limiting situation considers that particles,
It is well known that when diffusive processes couple towaiting a short time between jumps, may disperse according
reaction, front solutions exigfl]. When the reaction term is to a general dispersal distance distribution. We show that
of logistic type then the emerging frongsulled frontg from  traveling wave front solutions with a minimum speed se-
sufficiently localized initial conditions travel with minimum lected exist in this case for any dispersal kernel. Moreover,
possible speed. The simplest case is the parabolic reactiothe specific case of a Lapladeptokurtic dispersal distribu-
diffusion equation also called Fisher's equation where partion is studied, as it has major interest on ecological applica-
ticles jump according to diffusion and wait a short time be-tions (see, for example, Ref5)).
tween successive jumps. Some extensions of the Fisher’s
equation have been made. For example, if waiting times are IIl. REACTION-DISPERSAL MODELS
not so small but particles disperse by diffusion one has the \We derive the evolution equation for the reaction-
hyperbolic reaction-diffusion equatiofi2]. In ecological dispersal process according to the continuous-time random
modeling it is interesting to consider long range dispersalsyalk theory(CTRW). The quantity which defines the motion
but short waiting times; then one has to deal with integrodis the probability distribution functiotPDF) W(x,t) of the
ifferential equationg3]. The microscopic properties of the particle performing a jump of lengtk after waiting a timet
underlying transport may be described in general by a waitat jts starting point. IfP(x,t) is the probability density of
ing time ¢(t) and a dispersal distanc(x) probability dis-  arriving at pointx at time t and p(x,t) is the probability
tribution function(PDF). The first one gives the probability yensity of being at poirk at timet, we have
that a particle waits a time between successive jumps and .
the second one gives the probability of performing a jump OfP(x,t) _ f dx,f AW (x— Xt —t')P(x',t') + P(x,t = 0) &(t)
distancex. R 0
By means of the Hamilton-Jacobi methpd] we study
the minimum speed selection of pulled fronts and we show +g(x,1),
that these fronts exist only when both the Laplace transform
of ¢(t) and the bilateral transform ab(x) fulfill a certain
restriction. Then, traveling wave front solutions with a mini-
mum speed selected do not exist for arbitrary distributions,
an interesting result for the modelization of real systemgvhered(t) is the probability of remaining at least a tirhen
which is here illustrated for some limiting situations. First, the point before proceeding with another jump. ¢ft)
we consider that particles disperse by diffusion but wait a=fdx¥(x,t) is defined as the waiting time PDF, in the
time between jumps according to a general waiting time PDR-ourier-Laplace space, Eq4) can be rewritten in the closed
and for two specific cases of ecological interest: the Poissoform [6],
(which is usual when random processes are involeed the t
Dirac delta. The first one is in fact a family of PDF’s with a p(x,t) :f dt’go(t’)f dX' d(x)p(x - x',t—t")
long tail; only for some of them traveling wave front solu- 0 R
tions with a minimum speed selected may exist, as we shall t
see. The second one models a single waiting time which can +J dt’ p(t")f(p(x,t =t")). (2)
be arbitrarily large. In this case we show that the existence 0

t
p(X,1) :f dt’ o(t —t")P(x,t"), (1)
0
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In this expressionf is the local growth function and it
depends explicitly op as a nonlinear function. We will con-
sider that it is of the Fisher-Kolmogorov-Petrovski-Piskunov
type[1,7] f=rpF(p) wherer is the constant growth rate and

F(p) is such thatF(0)=1. Making use of the Hamilton-
Jacobi techniques we have shown befi@that in this case
Eqg. (2) becomes the Hamilton-Jacobi equation

1 A r 1
A—=q)(p)+—(A——1>,
®(H) H\ ¢(H)

with the hatted distributions defined as the transforme(of
and ®(x),

)

®(H) = f ) eMe(t)dt, d(p)= f ) D (x)dx, (4
0 -0

and the speed of the front given by the expressions

H dH_H

p’ dp p’

5

The latter is nothing but the existence condition of a mini-
mum speed itPH/dp?> 0. So, joining both equations in Eq.

(5) the expression for can be written as

_ . H _ . H(p
v=MN———Oorv=min——.

i) ! ©

Now, one may wonder if there exists any general conditio
for the existence of a minimum in these expressions. This
condition could be of great theoretical and practical interest,
as it would determine the form of the Laplace and bilateral

transform for the distributions of waiting times(H) and

dispersal distance@(p).
The existence of a minimum in E¢6) requires that

H H

d( (H)) d( <H>>
im—P% gand im—P 2l 20 (7
H—0 H—o dH

or

4 H® g H(p))
Iim—p <0 and Iim—p =0. (8)
p—0 p p—

First of all, we need to show that Eq&l) and (8) are

equivalent. An easy way to do this is by proving that

dH/dp>0 [as dv/dp=(dH/dp)(dv/dH)]. Then, we must
study the expression

(i)/
Mo (p) _ )
P _£<1_i>+L<ﬂ>

#@\" Hr/ H2\ §

where we defineib’(p)deiD(p)/dp and ¢’ (H)=de(H)/dH.

n
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<I>’(p)=f xepx<I)(x)dx=f X(eP*— e PP (x)dx > 0,
o 0

(10

where we have used the isotropy of the kernel, id&5x)
=d(x).

For the expression in the denominator, we start using the
normalization ofd(x) and ¢(t) to obtain

CiD(p) = fw eP*d(x)dx

= fe (e + e P D (x)dx

0

> inf (eP*+ e’”‘)foc d(x)dx=1, (11
0

xe[0,)

¢(H)=f e Mp(t)dt< sup (e‘”t)f pdt=1,
0 te[0,») 0

12

o' (H)y=- Jw te Mp(t)dt < 0. (13

0

Finally, from the resultg11) and(12), Eq. (3) lead us to

-5
1-—|=|—=]= >0.
Hr 1-¢ d(p) -1

So, we have proved the conditioiH/dp>0. Now we
know that Eqs(7) or (8) can be analyzed indistinctly. Hence
we just need to prove what are the necessary conditions for
Eq. (7).

(i) Limit Hr—0(p—0): From Eq.(14), it can be seen
that the solution is restricted for values gt higher thana.
Then, this limit is equivalent ttd7— a*. The derivative in
Eq. (7) reads

H
d(m>:; [1-3H) &'(H)  (HD*?
dH 2V oH) [1-¢H)PVHr-a
1 [ &H) VHH2H7-3a)
+-7 .
2" V1-pH) (Hr-a)?

Taking into account the expressio(i?) and(13) in Eq.
(15) we find that the condition

H
d(ﬁ)

lim ——— <0
H*)a"' dH

(14)

(15

(16)

holds for any value oHr.

The numerator and the denominator in the expression above (i) Limit Hr—oo(p— ) This limit cannot be analyzed
can be proved to be positive separately. For the numeratoptraight, so we first need to expand by Taylor up to ofder

we find

in »(H)™X and up to ordeN in ®(p),
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panded in Taylor series up to second order to yiéld))
=1+a,p+a,p? with a;=d'(p=0)=/ xP(x)dx=0 and a,
=2d"(p=0)=5/~X?P(x)dx=3M, where M, is the second

M
PH)= 2> B H™,
m=0

R N moment of the dispersal distance P@KRx) and we have
d(p) :2 anp”, (17) made use of Eq(4). This approximation corresponds to a
n=0 diffusive (classical dispersal. The speed is then from [Eg),
where the coefficients; and B; depend on the generating 5(H7)  (H7)32
moments of®(x) and ¢(t), respectively. In the limitHr v:iy min +/ (’DA z T , (19)
—oo(p— ) the expansions in E@17) are dominated by the THa V1-@(H7) JHT-a

term with the highest exponent and now the Hamilton-Jacobj yare 4= \M,/2 anda=rr. Let H* be the value oH where
equation(3) leads us to the relation 2 )

the minimum speed is reached. Then it is found from the

anpN = ByHY. (18)  second equation in E@S) that
That is,p~H"N and we can write =H(p)/p=cH'™N with o' (H*7) 3a-2H*r
by ) : . - = . (20
¢ a positive constant. This allows us to affirm that the second PH* D[1-pH* ] H* AH* 7—a)

condition in Eq.(7) only holds forM <N. R R _
As a result, we have found that traveling wave solutionsvhere ¢’(H* 7)=dg(H7)/d(H7) evaluated atH=H*. It is

with a minimum speed selected are only possible if the higheasy to see from Eq19) that when

est order in the truncation of the Taylor expansion of the A . 2

inverse ofep(H) is not higher than the order in the truncation $(H7)™ > O(H?r) (21)

of the Taylor expansion oi)(p)_ In previous workg2,9], it  then the speed monotonically decreases and no minimum is
has been shown that the meaning of cutting the Taylor exteached, which is in accordance with our general condition

pansion in<i>(p) at a low order is that our measurements are'vI =N found above(here we takeN=2, soM=2 is the

then restricted to much further distances than the charactef¢€SSary condition Let us explain this result for some

istic distance of dispersal (that is|x| > ), that is, we are in waiting time distribution of biological interest: Poisson and
. ! ' ' delta.
the asymptotic regiméor, analogously, one may say that the . e o .
distan?:/espof dispgrsal are shogrilikev)\:ise expa};ldinygAp(H) The Poisson waiting time distribution is found in the mo-
[or $(H)~1] just up to a certain order is e' uivalent to assumetion of cells when they wait a certain time between succes-
¢ J P q . “sive jumps in order to find the optimum spatial orientation to
Sperform the next jumpl0]. The general form for this distri-

than the characteristic waiting tine(that ist> 7) which is bution is

also equivalent to consider that waiting times are short.

From these arguments, the condition for the existenee of
found above is easy to interpret: if the distances where the o(t) = m(t/ﬂm exp(-t/7), (22
fronts can be analyzed are very higN is low), then the
times of our measurements must be correspondingly tNgh has a maximum att=mr, a mean waiting time(t)
not higher tharlN) and it is not possible to determine what = [Ste(t)dt=r(m+1), a kurtosis B,={t*)/({t?))?=(m+3)(m
happens at the initial stages. On the contrary, when we are4)/(m+1)(m+2), and a Laplace transfornp(H7)=(1
restricted to higltasymptotig times(N is low), we have that +H7) ™1,
there are no restrictions on the distances we may observe; as |, this case, the speed is given by
the front has already formed, we can study both the short and
the long distances. a (Hn)%?

Besides the intuitive interpretation given here, we want to Um="" M7 ] e (23

i . T HrrayH7r—ay(1+H)™ -1

stress that the conditioM <N we have found is of great
practical interest, since it shows that we cannot choose arband it is easy to see that for> 1 the speed decreases mono-
trarily the distributionsp(t) and®(x) if we want to guarantee tonically to zero and no front minimum speed is reached.
the existence of traveling wave front solutions with a mini- Furthermore, the conditiof20) has no solution fom>1. To
mum speed selected of reaction-dispersal equations; it is aee this, let us express H@O) for this particular case,
important fact that experimentalists should take into account m -
for the modelization of real systems. In the next sections,(M*+ DH7(H7-a)(1 +H7)™=(2H7-3a)[(1 +H7)™" - 1].
some specific examples are reported in order to illustrate the (29
above results.

We callR(H7) andl(H7) the right and left hand sides of Eq.

IIl. LONG WAITING TIMES AND SHORT DISTANCE (24), respectively. Both sides start from 0 and initially de-
OF DISPERSAL crease withH7 but the curveR is below the curvé because

R'(0)=-3a(m+1) andl’(0)=—a(m+1). For Hr— o thenR
We assume in this section that the dispersal distance PDE 2(H7)™2 and | ~(m+1)(H?™2. In consequence, both

describes jumps of short length. The@r,(p) may be ex- curves intersect iR is abovel for largeHr and this is pos-
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FIG. 1. Plot of the dimensionless front speed/ « versus the
dimesionless parametex for a family of Poisson waiting time
PDF's. The speed is calculated from E3). This plot shows that

the speed decreases withbecause the waiting time of maximum
probability moves to the right whem increases. Values obtained

from computer simulations are also shown far=0 (circles, m
=0.5(squarey andm=1 (triangles.

sible only if m<1. This agrees with the conditiohl <2
noted above.
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time step. More details about the simulations can be found in
Ref. [6].

The agreement found between these simulations and Eq.
(23) is excellent for low values o&. However, when this
parameter is higher some discrepancies appescept for
the Fisher’s casen=0, which is valid for anya); it probably
happens when the divergency ih* = reported abovefor
example,a— 2 for m=1) becomes apparent.

We assume now a waiting time distribution with the form
o(t)=48(t—7) which has a Laplace transfor@a(rH)=e™"".
This PDF models particles which wait a time(arbitrarily
large) between successive jumps. From Ef9) the front
speed is given by

H 3/2
o= min——0 (27)
7 Hr=a\el" - 1VH7 - a
and the conditior{20) is found to be
3a-2H
et . (29)

THZZ-(2+aHr+3a’

The speed must be calculated fér> a but Eq.(28) has no
solution because fdd 7= a the left hand side of Eq28) is
always greater than the right hand side. So, fronts do not

In conclusion, when the dispersal is driven by diffusion €xist for this waiting time distribution. However, for short

and a Poisson waiting time PDF, fronts only existrit< 1,

that is, for a mean waiting time lower tham,2or when the
time of maximum probability is lower tham or when the
kurtosis of the waiting time PDF is greater than 10/3.

waiting times fronts may exist. For example, if one takes
ei"=1+Hr one has the parabolic reaction-diffusion equa-
tion and Eq.(27) yields again the Fisher spe€gb). If one
takes nowe"7=1+Hr+3H?7? one has the hyperbolic reac-

Two analytical expressions for the speed may be foundtion diffusion[2] where the effect of waiting time is stron-
For m=0 we have the exponentially decaying waiting time ger than in the parabolic case.

distribution ¢(t)=7"1e"’” and the speed of the front is the

Fisher one,

vo=2"a, (25)
T

while for m=1 one hase(t)=7"%(t/7) exp(-t/7), and from

EqQ. (24) one has the minimum attained Ht* 7=4a/(2-a)

for a<2 and the speed is

=
a\2Va
U1:2_
T2+a

, fora<2. (26)

It is easy to see thab;<v,. For the rest of valuesn

€[0,1] the minimum must be calculated numerically from

Eq. (23). We plot some results for different values afin
Fig. 1; it is seen there that the speed decreases witte-

IV. SHORT WAITING TIMES AND LONG DISTANCE
OF DISPERSAL

In this section we assume a waiting time PDF with short
waiting times and a general jump length PDF. For short wait-
ing timest> 7 one may consider the following Taylor expan-
sion: 1/p(H)=1+b;H where b;=-3'(H=0)/p(H=0)?
= [pte(t)dt= 7 is the mean waiting time, so that &H)=1

+H7 and Hamilton-Jacobi equatiof8) is H=7-‘1[<i>(p)+a
—1]. Therefore the speed of the front may be calculated from
Eq. (),

1 . (i)(p)+a—1
v=—mn——.

(29
T p>0 P

cause the most probable waiting time moves to the right
whenm increases. Simulations of these stochastic processgsig easy to check that the functid®(p)=[®(p)+a-1]/p

on square lattices have also been performed to prove t

validity of the theoretical values af; they appear in Fig. 1

hQways has a minimum. In the limitp—0, F'(p)

(pointy too. In that simulation, the continuous distributions ={®'(p)/p-[®(p)+a-1]/p? ~-1/p?<0 and the speed is

were discretized in order to adapt them to the lattadevays

a decreasing function gb whenp is near 0. On the other

choosing the parameters of the algorithm in order to mini-hand, in the limitp— <, F'(p) ~®’(p)/p>0 and the speed
mize the effect of the discretization over the dynamics of thds an increasing function op. In consequence, the speed
system. The reaction process was introduced by applyingalways reaches a positive minimum value in the inteqval
the functionf=rpF(p) discussed above to every site at every [0,%) and the front always exists. This is in accordance
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V. CONCLUSIONS

Traveling wave front solutions of reaction-dispersal pro-
cesses with a minimum speed selected do not always exist
for an arbitrary waiting time and dispersal distance distribu-
11 tions. The existence of these fronts depends on the PDF’s
] chosen to model the process, so the main conclusion of this
> work is that in general they cannot be chosen separately in
] order to have traveling wave fronts selecting the minimum
speed. Specifically, we have achieved that traveling wave
solutions with a minimum speed selected are only possible if
the order in the truncation of the Taylor expansion of the
0.2 inverse of the Laplace transform of the waiting time PDF is
] . —— I not higher than the order in the truncation of the Taylor ex-
0.01 0.1 1 pansion of the bilateral transform of the dispersal distance

a PDF. Then, if we are restricted to observe what happens at
long times we cannot obtain information from what happens
at short distances and so no minimum speed is selected.
However, when our measurements are restricted to long dis-
persal distances then we find that no restrictions, on the trun-
cation of the Taylor expansion of the inverse of the Laplace
transform of the waiting time PDF, appear for the existence
of fronts, as both short and long waiting times are tractable.

As some illustrative examples, we have seen that when
the dispersal process is diffusive, the existence condition re-
. quires that the inverse of the Laplace transform of the wait-
b= }q)(p )t+a- 1, (30) ing time PDF may be expanded in Taylor up to second order

FIG. 2. Plot of the dimensionless front speed/ « versus the
dimensionless parameter for a Laplace dispersal distance PDF.
The theoretical speedine) is calculated from Eq(33) and com-
pared to simulationgpoints.

with our general arguments above: hdde=1, so any value
for N is allowed.
The speed is finally computed from E)

T p* (not more. This result has been verified for different waiting
. . time PDF’s and contrasted with numerical simulations. For a
wherep* is solution of ®(p*)+a-1=p* d'(p*). family of Poisson PDF’s we have shown that traveling wave
We report here the Laplace kernel front solutions with a minimum speed selected exist only if
m=1. Likewise, for a single waiting time PDF these fronts
1 . only exist if the waiting time is sufficiently small. However,
P00 = er (31) when the dispersal process is described by a long-tailed dis-

persal distance PDF traveling wave front solution with a
as a typical example of a kernel usual in ecological systemginimum speed selected exist if the waiting time is suffi-
related to dispersal of speci¢s]. When the Laplace trans- ciently small. We have detailed this case for the Laplace
form of Eq. (32), dispersal distance PDF and it has been compared to numeri-

cal simulations.

(i)(p) =(1-o?pP7L, (32) So, we think that the work presented here can be useful
for a wide number of scientists working on reaction-dispersal
is introduced into Eq(29), the resulting expression we ob- systems where the specific pattern of dispersal needs to be
tain for the velocity is described in great detail. We have reported some specific
examples in relation to ecological systems, but many other
2a0  4(1-a)? {— 1-2a+\1+ ga}l’z potential applications, covering very different argasli],
YT 3-\1+8)? 21-a) (33 can benefit from these results.

In Fig. 2 we show the comparison between this theoretical
prediction forv and the values found from direct simulations ~ This work has been supported by the MCYT under Grant
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